您好、欢迎来到现金彩票网!
当前位置:双彩网 > 向量屏蔽 >

word2vec使用说明

发布时间:2019-06-04 02:47 来源:未知 编辑:admin

  word2vec是一个将单词转换成向量形式的工具。可以把对文本内容的处理简化为向量空间中的向量运算,计算出向量空间上的相似度,来表示文本语义上的相似度。

  自然语言理解的问题要转化为机器学习的问题,第一步肯定是要找一种方法把这些符号数学化。

  NLP 中最直观,也是到目前为止最常用的词表示方法是 One-hot Representation,这种方法把每个词表示为一个很长的向量。这个向量的维度是词表大小,其中绝大多数元素为 0,只有一个维度的值为 1,这个维度就代表了当前的词。

  这种 One-hot Representation 如果采用稀疏方式存储,会是非常的简洁:也就是给每个词分配一个数字 ID。比如刚才的例子中,线 开始记)。如果要编程实现的话,用 Hash 表给每个词分配一个编号就可以了。这么简洁的表示方法配合上最大熵、SVM、CRF 等等算法已经很好地完成了 NLP 领域的各种主流任务。

  当然这种表示方法也存在一个重要的问题就是“词汇鸿沟”现象:任意两个词之间都是孤立的。光从这两个向量中看不出两个词是否有关系,哪怕是话筒和麦克这样的同义词也不能幸免于难。

  要介绍词向量是怎么训练得到的,就不得不提到语言模型。到目前为止我了解到的所有训练方法都是在训练语言模型的同时,顺便得到词向量的。

  这也比较容易理解,要从一段无标注的自然文本中学习出一些东西,无非就是统计出词频、词的共现、词的搭配之类的信息。而要从自然文本中统计并建立一个语言模型,无疑是要求最为精确的一个任务(也不排除以后有人创造出更好更有用的方法)。既然构建语言模型这一任务要求这么高,其中必然也需要对语言进行更精细的统计和分析,同时也会需要更好的模型,更大的数据来支撑。目前最好的词向量都来自于此,也就不难理解了。

  词向量的训练最经典的有 3 个工作,C&W 2008、M&H 2008、Mikolov 2010。当然在说这些工作之前,不得不介绍一下这一系列中 Bengio 的经典之作

  词向量的评价大体上可以分成两种方式,第一种是把词向量融入现有系统中,看对系统性能的提升;第二种是直接从语言学的角度对词向量进行分析,如相似度、语义偏移等。

  1. 直接用于神经网络模型的输入层。如 C&W 的 SENNA 系统中,将训练好的词向量作为输入,用前馈网络和卷积网络完成了词性标注、语义角色标注等一系列任务。再如 Socher 将词向量作为输入,用递归神经网络完成了句法分析、情感分析等多项任务。

  2. 作为辅助特征扩充现有模型。如 Turian 将词向量作为额外的特征加入到接近 state of the art 的方法中,进一步提高了命名实体识别和短语识别的效果。

  这些实验结果中最容易理解的是:语料越大,词向量就越好。其它的实验由于缺乏严格控制条件进行对比,谈不上哪个更好哪个更差。不过这里的两个语言学分析都非常有意思,尤其是向量之间存在这种线性平移的关系,可能会是词向量发展的一个突破口。

  关于Deep Lerning In Nlp的一些相关论文,《Deep Learning in NLP (一)词向量和语言模型》()这篇博客总结的非常的好。以上内容大多数都是截取原博客内容。

  这篇文章是最近几天看word2vec源码以及相关神经网络训练词向量论文之后的个人小小的总结,主要是针对word2vec的使用,做一下介绍。望大家使用的过程中,少走弯路。

  word2vec工具中包含了对两种模型的训练,如下图。在训练每种模型的时候又分HS和NEG两种方法。(看图就可以发现,其实word2vec并不deep)

  除了google自己的word2vec工具,各位对词向量感兴趣的牛人们也相继编写了各自不同的版本。其中比较好用的是Python Gensim主题模型包中的word2vec,但通过阅读其源码python版本只实现了skip-gram模型,并且只实现了通过分层softmax方法对其训练,并没有使用negative sampling。下面列举一下目前出现的版本以及相对应的地址,供大家选择。如下表:

  以上代码,C++版本的我没有看过。最权威的当然是C语言版本,但是阅读起来比较困难一点。Python版本有优化处理,所以速度相对来说也不慢,但只是实现了分层softmax方法对skip-gram模型进行训练。Java版本分别实现了分层softmax方法对CBOW模型和skip-gram模型进行训练。C++版本的没有阅读其代码,所以未知

  使用之前,先贴一些论文中对两个模型和不同方法的评价图片,方便大家根据不同任务进行不同训练。

  1.将文本语料进行分词,以空格,tab隔开都可以,中文分词工具可以使用张华平博士的NLPIR2013喜欢用Python 的童鞋也可以使用结巴分词。

  2.将分好词的训练语料进行训练,假定我语料名称为test.txt且在word2vec目录中。输入命令:

  以上命令表示的是输入文件是test.txt,输出文件是vectors.bin,不使用cbow模型,默认为Skip-Gram模型。 每个单词的向量维度是200,训练的窗口大小为5就是考虑一个词前五个和后五个词语(实际代码中还有一个随机选窗口的过程,窗口大小=5)。不使用NEG方法,使用HS方法。-sampe指的是采样的阈值,如果一个词语在训练样本中出现的频率越大,那么就越会被采样。-binary为1指的是结果二进制存储,为0是普通存储(普通存储的时候是可以打开看到词语和对应的向量的)除了以上命令中的参数,word2vec还有几个参数对我们比较有用比如-alpha设置学习速率,默认的为0.025.min-count设置最低频率,默认是5,如果一个词语在文档中出现的次数小于5,那么就会丢弃。-classes设置聚类个数,看了一下源码用的是k-means聚类的方法。

  3.训练好模型之后,得到vectors.bin这个模型文件。vectors.bin这个文件就是文档中词语和其对应的向量,这个向量的维度是你训练时设置的参数大小。下面我们可以利用这个model做很多自然语言处理的任务了。Google代码里面提供了distance的一个应用,说白了就是读取模型文件中每一个词和其对应的向量,计算所输入query的词,与其他所有词语的cosine相似度,排序,返回结果。同理训练命令中的-classes参数,也是获取每个词对应的向量之后,对词语进行k-means聚类。对于训练出来的模型进行操作,我推荐大家使用这个java版本的模型读取类,比较方便,读取模型之后大家就可以来实现各种各样有趣的东西了。下面举几个例子:

  a.计算两个词语相似度,如图1计算asp与net的相似度为0.6215127

  c.寻找对应关系:如图3: 男人-男孩 女人-? 如图4:内蒙-呼和浩特 河北-?

http://bluecaleel.com/xiangliangpingbi/69.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有